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CHANNEL RATE EQUALIZATION TECHNIQUES
FOR ADAPTIVE TRANSFORM CODERS

Richard V. Cox and Andrew G. Tescher
The Aerospace Corporation
El Segundo, California 90009

Abstract

The channel rate equalization problem inherent in a variable rate coding problem is analysed in this
paper. Specific solutions are developed for adaptive transform coding algorithms. The actual algorithms
depend on either pretransform or post-transform buffering. Simulations indicate small performance
variations between the techniques.

Introduction

Although more complex in implementation, adaptive techniques have been demonstrated to
outperform nonadaptive procedures by significant margins. An adaptive bandwidth compression procedure
by definition "adapts'' to the local statistical characteristics of the data. In contrast, a nonadaptive techni-
que presupposes stationarity. The Markov model used by several investigators for transform coding ﬁ a
well -known (and reasonably successful) example of stationary statistical characterization for images. )

The motivation behind adaptive image coding procedures is the necessity to model imagery as a
nonstationary source. The bandwidth compression algorithm performs a ''learning' procedure by which
a localized model is developed, which is, however, only applicable to smaller limited image regions.

In practical terms, adaptivity implies that important parameters of the bandwidth compression
algorithm are image dependent. For a fully adaptive technique, the local compression rate is also varying.
In contrast, the practical constraint of the fixed rate channel can not be ignored. This appropriate buffering
problem associated with variable rate transform coding through fixed rate channels is the objective of the
study discussed in this paper. Previous papers(2) on adaptive transform coding have omitted discussion of
the buffering problem.

In the following, two fully adaptive transform coding algorithms will be discussed. In addition to
some of the superficial similarities to previous procedures, each technique incorporates specific channel
rate equalizing methods. It will be shown that both '"equalizing'' methods strongly influence and interact
with the appropriate algorithms,

Adaptive Transform Coding

Prior to the discussion of specific algorithms, an overview of adaptive transform coding is presented.
At first, only elements common to adaptive transform coding are discussed. Actual details of individual
algorithms are deferred to the next section.

All adaptive image compression algorithms are based on the concept that some image areas have more
detail than others; consequently, they require a larger fraction of the available bandwidth. The equivalent
theoretical viewpoint is that all local image regions should have approximately the same amount of dis-
tortion resulting from the bandwidth compression. This approach will also allocate more bits to busier
image regions. Common to the algorithms to be discussed is that local picture segments are classified
according to their structure followed by bit allocation according to classification.

The basic configuration for an adaptive transform coding algorithm is shown in Figure 1. The incoming
image is in the form of scan lines which are stored in and reformatted in buffer No. 1. Transform coding
algorithms process the data one block (usually square) at a time. Thus, generated bit stream (code words)
is stored in buffer No. 2 prior to transmission through the channel. For the actual examples, a 16 X 16
block size was chosen. Consequently, 16 scan lines must be stored in buffer No. 1. These 16 lines will be
referred to as a '"data strip.'" Similarly, buffers No. 3 and No. 4 perform the same function for the
receiver,

The variance of each block is computed and specified as the measure of detail in that block. The actual
classification is based on the block variance. FEach block is transformed using the Cosine transform.
Transform coefficients are quantiz(-d( ) according to the conventional bit allocation procedures.

Adaptivity based on local variance is common in the various algorithms discussed in this paper. The
required buffering problem, however, is solved differently by each algorithm.

Discussion of the Specific Algorithms

Two solutions to the channel rate equalization problem have been considered in this paper. They are
representative of two classes. For the first class, the bit rate over each data strip is equalized. A sliding
window feedback technique is used for the second.
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The flow diagram for the first solution is shown in Figure 2.

Algorithm No, 1

In this algorithm, each image block is classified into one of eight classes according to seven total
variance threshold levels. These threshold levels must be specified a priori and were chosen with the
objective of equal usage of all eight classes. After a data strip enters the first buffer, each block is
classified. The actual rate equalization is performed over data sirips in the following way: for each
class, bit assignment matrices are computed which are expected to produce approximately the same amount
of quantization error. Let

n = number of blocks of class k in the data strip

and
"..(k) = standard deviation matrix element of coefficient i, j for
Y class k
() _ o () _ y
= bit assignment for coefficient ij in class k
where

integer value of x if x 2 2
f(x) = (2)
0 otherwise

The parameter D is chosen such that

8 8
Z nkZbij(k)=(l6x16xR-3) Z n (3)
k=z1 i, j k=1

where R is the specified rate for the channel. The class assignments require 3 bits per block. These
"overhead' bits account for the bits subtracted from the right-hand side of Eq. (3). Figure 3 is the
flowchart for a straightforward iterative computation of D in Eq. (3). Since the parameter D can be com-
puted based on the class codes, it need not be transmitted over the channel.

Algorithm No. 2 (Sliding Window Feedback Technique)

The output buffer status is used in determining the local bit allocation in this algorithm. The important

new concept, the sliding windows, is introduced here. Otherwise, the algorithm is based on algorithm No. 1.

In the previous algorithm, the coding was performed to yield a fixed bit rate for each data strip. Parameter
D is recalculated more often, but the calculation is based on the previous blocks and the current buffer
status. Thus, D is being calculated a posteriori instead of a priori.

Figure 4 illustrates the sliding window technique. It is assumed in the figure that steady state has
started. The blocks in the window have already been classified and coded. These classifications in
conjunction with the buffer status are used to compute D. The next point D is recomputed based on the
new window and the new buffer status. Then, the next cycle begins. The equation for computing D is
given by changing Eq. (3) to

8 8
anzbij(k)=(l6x16xR-3)Znk-B (4)
k=1

k=1 ij

The parameter B, the relative buffer status, serves as the feedback from the output buffer.
Specifically, when the ""current'' rate is the required rate, B is zero. In low detail areas, B tends to
be positive and, thus, induces a change in D in order to maintain the required average rate. Similarly,
for busy regions B will be negative.
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1f n)' is the number of blocks of class k in the blocks to be coded using D, then the new relative
coding status, B', after the coding is complete is given by

8
B' - B+ Z nk/z bij(k) - 16 X 16 X R (5)
rgesy Bl vy

It should also be noted that the computation of D (via Eqs. (4) an . (1}) now only involves previously
coded information; thus, D can be recovered from the received data and need not be transmitted.

Results

Compatison of the two algorithms at various bit rates is shown in Figure 5. The performance
criterion is the normalized mean square error (relative to image variances). The performance curves
for the two algorithms demonstrate approximately equal results. Pictorial examples are shown in
Figures 6 and 7. Because there was no visual difference between the pictorial results for the two
algorithms ali of the examples are for algorithm No. 1.

Rate Fluctuation and Relative Buffer Status

The relative buffer status is defined as the local deviation in bits from the exact number specified by
the channel rate. It is instructive to analyze this parameter since it is indicative of the buffer utilization.
Algorithm No. 1 was used for the various examples.

In Figure 8, the relative buffer status is shown for each block of data processed. It is assumed that
the channel decreases the number of bits in the buffer by a fixed value per unit time. The coding algorithm
conversely adds bits to the buffer at a variable rate. Since the data strip consists of 32 sub-blocks, the
buffer status assumes the value of zero for multiples of 32. On the other hand, at intermediate points the
deviation from the "average' value reaches almost 3000 bits.

Figure 9 shows the instantaneous bit rate for this coding algorithm. Note that every block of data
was encoded at a different bit rate. Here, the channel rate is 2 bits per pixel. It is evident that the bit
rate varies significantly. The cummulative bit rate is shown in Figure 10. The average rate stabilizes
at 2 bits as a larger fraction of the image is encoded.

Conclusions

Two transform coding algorithms have been analyzed according to the problem of channel rate
equalization. Classification schemes are utilized to achieve adaptivity. The added consideration of channel
rate equalization with an adaptive transform coding algorithm has not been considered previously. The
purpose of this paper was to consider two different approaches to the rate equalization problem. In the
end result, although these methods were different, there was no visual difference between these pictorial
results and little difference in terms of mean square error.
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